Showing posts with label ESEMKA Made in Indonesia. Show all posts
Showing posts with label ESEMKA Made in Indonesia. Show all posts

Mobil Murah, Jangan Mengulang Kesalahan Thailand

Pemerintah tengah bernafsu membuat proyek mobil murah yang ramah lingkungan alias low cost car yang akan dijual seharga Rp 75-80 juta. Jika tidak ada halangan dalam waktu 2 tahun mobil murah itu akan terwujud.

Bagaimana skema dan kebijakan mobil murah? detikOto mewawancarai Dirjen Industri Unggulan Berbasis Teknologi Tinggi Kementerian Perindustrian, Budi Darmadi di kantornya, Jalan Gatot Subroto, Jakarta.

Berikut petikan wawancaranya.

Bagaimana kemajuan rumusan kebijakan mobil murah?

Regulasi sedang dirumuskan antar departemen.

Seperti apa low cost car yang diinginkan pemerintah, berapa kapasitas mesinnya?

Low cost car itu adalah sebuah program yang memberikan insentif fiskal untuk produsen yang bisa membuat mobil yang konsumsi bahan bakarnya irit. Sementara itu kita, ini sudah dirumuskan tapi kira-kira adalah 22 km per liter untuk mesin 1.000 cc dan dan 20 km per liter untuk mesin 1.200 cc. Kira-kira itu.

Tetapi kandungan lokalnya harus dibuat di Indonesia terutama engine, transmisi dan exhaust dalam tempo atau periode tertentu.

Landungan lokalnya 1.000 cc dan 1.200 nantinya sama 80 persen. Di tahun pertama 40 persen, selanjutnya harus 80 persen.

Kok regulasi lama keluarnya?

Ya karena kan harus dihitung standar apa yang dipakai, seperti konsumsi BBM, cara pengujian, untuk menentukan kandungan lokal, tahun ke berapa dia bisa memenuhi kandungan lokal.

Harus kita tanya dulu kesanggupannya gimana, kalau kita tentukan target terlalu tinggi, nanti gak ada yang bisa, gak ada yang ikut.

Kalau kita tentukan terlalu rendah, nanti akhirnya kita enggak ada kemandirian di bidang transmisi, engine, exhaust. Itu kan harus disurvei dulu.

Komponennya bisa dibuat enggak? Kita kan ada sekitar 800 komponen, kalau kita tentukan di tahun ketiga, ini bisa suplai tidak, kalau produsen angkat tangan, enggak bisa suplai, enggak jalan juga, nah itu perlu waktu.

Dan itu survei itu sedang dijalankan setahun ini, kok lama kan banyak yang harus dicek, engineering, teknologi dan ekonomisnya. jadi perlu waktu, enggak sembarangan.

Kita belajar dari Thailand. Thailand (program eco car) tidak begitu berhasil.

Karena Thailand menentukan target terlalu tinggi, akhirnya tidak ada yang bisa, akhirnya produsen angkat tangan, menyerah, akhirnya program itu tidak terlalu berhasil. Kita tidak ingin mengulangi kesalahan Thailand. (catatan redaksi: Di Thailand, pabrikan harus memproduksi 100.000 unit minimal)

Apa pabrikan diberi syarat kapasitas produksi yang harus dipenuhi?

Enggak

Minimal pabrikan setahun harus memproduksi berapa unit?

Ya tergantung kesanggupan masing-masing produsen. Tanya ke produsennya berapa you ekonomisnya. Harus agak smart. Sanggup tapi rugi, sanggup tapi untung? Mereka masing-masing punya nilai ekonomis, tiap produsen beda-beda.

Apa betul diwajikan memproduksi 100.000 per tahun?

Tidak tepat, setelah tahun ke berapa, pada tahun pertama susah sih.

Memang survei menyatakan bahwa potensi antara 300-600 ribu itu akan bisa terserap pertambahannya dalam penjualan mobil. Tapi itu tidak tahun pertama ya, tetapi setelah beberapa tahun diintroduce, jadi ada potensi berdasarkan hitungan statistik.

Ada berapa pabrikan yang tertarik?

Nanti kalau secara resmi akan diumumkan.

Katanya 3 merek pabrikan Jepang ingin masuk?

Sampai saat ini semua mereka sudah nanya, tetapi nanti yang benar-benar nanti kan akan berpikir, nanti tunggu regulasi jadi akan yang solid.

Bagaimana dukungan permerintah kepada produsen kecil?

Potensi pasar ini oleh dimanfaatkan oleh siapa saja. kita dukung industri kecil. Semuanya bisa.

Sudah banyak yang kita lakukan, kita bantu pas uji cobanya, riset dan pengembangannya, kan itu cukup mahal untuk riset.

Kalau masalah modal pabrikan kecil?

Modal, itu kan masalah perusahaan, kita tidak boleh membantu, tapi kita bantu dari sisi engineering-nya,

Kita kadang bantu di riset dan pengembangannya. Ini terbuka siapa saja, asal memenuhi syarat.

Indonesian mobnas should learn how Korea produce their own car

There is an interesting story below how Hyundai produce their own car in 1970's manage to become the biggest car producer in the world.

Indonesia's mobnas or national car should learn their story to see that Indonesia is very close to build a made in Indonesia's car. Please read:

In February 1976, Hyundai Motors, still a young Korean automaker, began sales of a new car, the Hyundai Pony.

Strictly speaking, this was not the first Korean car, but it surely was the first Korean car that enjoyed massive commercial success.

The Hyundai Pony launched the car boom inside Korea, and also became the first Korean car to appear in overseas markets.

The Korean car industry is surprisingly young, even though it is somewhat difficult to believe nowadays, when Korea plays a major role in the international automotive industry.

South Korea is the world's fifth-largest producer of motorcars, and in 2009 it produced 3.6 million vehicles, of which roughly two thirds (2.55 million, to be precise) were exported.

The first attempt to make cars locally took place in 1955 when a small Korean company began to assemble copies of the U.S. jeeps, largely using spare parts from de-commissioned military vehicles.

Their efforts attracted much attention and praise back in the 1950s, but the company managed to produce only a small number of vehicles: The market was too weak and the government remained indifferent.

In the 1960s, some Korean entrepreneurs tried to assemble Japanese and American cars, but again with limited success: Korea lacked capital and technology, and the domestic market was very small.

Things changed in the early 1970s when the South Korean government decided to promote the automotive industry as one of the key currency-earners for the country.

This looked like a bold and risky decision at the time: After all, until the early 1960s South Korea had no modern industry whatsoever, and by the early 1970s it was still largely known as a producer of cheap garments, toys and wigs.

By now we can see that this risky decision made perfect sense.

By the 1970s, major South Korean companies accumulated enough expertise to deal with the least demanding types of machine-building, and the military government firmly believed in the advantages of the industrial growth.

General Park Chung-hee, the increasingly authoritarian strongman, had a vision for future Korea, and this vision did not include bucolic villages with thatched roofs, but rather highways, steel mills and gigantic shipyards.

The military rulers did not opt for free competition in the emerging automotive industry and drew a list of companies that would be allowed (and, indeed, required) to mass produce cars.

The list was short, since it included only three companies: Hyundai, Kia and Daewoo. It remained almost unchanged for the next two decades.

To drive away foreign competition, the government introduced high protectionist tariffs that essentially closed the Korean market to outsiders.

It was understood that the first cars would be based on foreign designs, but as a condition of the government's support the producers were required to use an ever increasing amount of locally made spare parts.

The three chosen companies had only limited previous experience in car making.

Hyundai Motors was founded in 1967, and for a while produced some cars in cooperation with Ford and General Motors.

Kia, initially a producer of bicycles, had also experimented with motor vehicles. Nonetheless, the modern mass production industry had to be created from scratch.


In the mid-1970s, a number of locally made cars hit the market.

Kia rolled out its Brisa in early 1974, but it was the Hyundai Pony that came to be affectionately remembered as Korea's first mass-produced car.

Well, this was not completely Korean: Its 1.2L engine and transmissions came from Mitsubishi, while its design was developed by an Italian firm.

Nonetheless, it was produced in Korea, by Korean workers and technicians, and the percentage of the locally produced parts eventually reached an impressive 90 percent.

In 1982, Pony I was upgraded to Pony II, which remained in production until 1990. Pony also has the distinction of being the first Korean passenger car to be exported overseas. The exports began in 1976 when five vehicles were exported to Ecuador.

Eventually, these small cars went to many places in Latin America and the Near East, but soon Hyundai tried an established market; in 1984, the Pony went on sale in Canada.

This led to an unexpected success; for a while, the tiny car from what was still perceived a Third World nation became the top-selling car in Canada.

Indeed, the export played a major role in the growth of the Korean car industry; since the early 1990s between half and two thirds of all Korean cars have been sold overseas.

Nonetheless, the growth of the domestic demand was equally impressive.

In 1970, there were merely 130,000 cars in the nation. In 1985, soon after the debut of the Pony, the number reached the one million mark for the first time.

In 1995, there were eight million cars in Korea, and in 2010 the number of motor vehicles reached the 17 million mark. It seems that the saturation point has been reached: Korea has become a country of the automobile.

The process, which in developed countries took about a century, was complete here in three decades.

How to finance "Mobnas" project

Indonesia is facing difficulties on how to finance "Mobnas" or national car project. Although the demand for Mobnas is extremely high, car producer seem to be fail to finance their project.

To overcome this problem we should understand the background of financing a project as follow.

Project finance is the long term financing of infrastructure and industrial projects based upon the projected cash flows of the project rather than the balance sheets of the project sponsors. Usually, a project financing structure involves a number of equity investors, known as sponsors, as well as a syndicate of banks that provide loans to the operation. The loans are most commonly non-recourse loans, which are secured by the project assets and paid entirely from project cash flow, rather than from the general assets or creditworthiness of the project sponsors, a decision in part supported by financial modeling. The financing is typically secured by all of the project assets, including the revenue-producing contracts. Project lenders are given a lien on all of these assets, and are able to assume control of a project if the project company has difficulties complying with the loan terms.

Generally, a special purpose entity is created for each project, thereby shielding other assets owned by a project sponsor from the detrimental effects of a project failure. As a special purpose entity, the project company has no assets other than the project. Capital contribution commitments by the owners of the project company are sometimes necessary to ensure that the project is financially sound. Project finance is often more complicated than alternative financing methods. Traditionally, project financing has been most commonly used in the mining, transportation, telecommunication and public utility industries. More recently, particularly in Europe, project financing principles have been applied to public infrastructure under public–private partnerships (PPP) or, in the UK, Private Finance Initiative (PFI) transactions.

Risk identification and allocation is a key component of project finance. A project may be subject to a number of technical, environmental, economic and political risks, particularly in developing countries and emerging markets. Financial institutions and project sponsors may conclude that the risks inherent in project development and operation are unacceptable (unfinanceable). To cope with these risks, project sponsors in these industries (such as power plants or railway lines) are generally completed by a number of specialist companies operating in a contractual network with each other that allocates risk in a way that allows financing to take place. "Several long-term contracts such as construction, supply, off-take and concession agreements, along with a variety of joint-ownership structures, are used to align incentives and deter opportunistic behaviour by any party involved in the project." The various patterns of implementation are sometimes referred to as "project delivery methods." The financing of these projects must also be distributed among multiple parties, so as to distribute the risk associated with the project while simultaneously ensuring profits for each party involved.

A riskier or more expensive project may require limited recourse financing secured by a surety from sponsors. A complex project finance structure may incorporate corporate finance, securitization, options, insurance provisions or other types of collateral enhancement to mitigate unallocated risk.

Project finance shares many characteristics with maritime finance and aircraft finance; however, the latter two are more specialized fields.

Basic scheme

Hypothetical project finance scheme

Acme Coal Co. imports coal. Energen Inc. supplies energy to consumers. The two companies agree to build a power plant to accomplish their respective goals. Typically, the first step would be to sign a memorandum of understanding to set out the intentions of the two parties. This would be followed by an agreement to form a joint venture.

Acme Coal and Energen form an SPC (Special Purpose Corporation) called Power Holdings Inc. and divide the shares between them according to their contributions. Acme Coal, being more established, contributes more capital and takes 70% of the shares. Energen is a smaller company and takes the remaining 30%. The new company has no assets.

Power Holdings then signs a construction contract with Acme Construction to build a power plant. Acme Construction is an affiliate of Acme Coal and the only company with the know-how to construct a power plant in accordance with Acme's delivery specification.

A power plant can cost hundreds of millions of dollars. To pay Acme Construction, Power Holdings receives financing from a development bank and a commercial bank. These banks provide a guarantee to Acme Construction's financier that the company can pay for the completion of construction. Payment for construction is generally paid as such: 10% up front, 10% midway through construction, 10% shortly before completion, and 70% upon transfer of title to Power Holdings, which becomes the owner of the power plant.

Acme Coal and Energen form Power Manage Inc., another SPC, to manage the facility. The ultimate purpose of the two SPCs (Power Holding and Power Manage) is primarily to protect Acme Coal and Energen. If a disaster happens at the plant, prospective plaintiffs cannot sue Acme Coal or Energen and target their assets because neither company owns or operates the plant.

A Sale and Purchase Agreement (SPA) between Power Manage and Acme Coal supplies raw materials to the power plant. Electricity is then delivered to Energen using a wholesale delivery contract. The cashflow of both Acme Coal and Energen from this transaction will be used to repay the financiers.

Complicating factors

The above is a simple explanation which does not cover the mining, shipping, and delivery contracts involved in importing the coal (which in itself could be more complex than the financing scheme), nor the contracts for delivering the power to consumers. In developing countries, it is not unusual for one or more government entities to be the primary consumers of the project, undertaking the "last mile distribution" to the consuming population. The relevant purchase agreements between the government agencies and the project may contain clauses guaranteeing a minimum offtake and thereby guarantee a certain level of revenues. In other sectors including road transportation, the government may toll the roads and collect the revenues, while providing a guaranteed annual sum (along with clearly specified upside and downside conditions) to the project. This serves to minimise or eliminate the risks associated with traffic demand for the project investors and the lenders.

Minority owners of a project may wish to use "off-balance-sheet" financing, in which they disclose their participation in the project as an investment, and excludes the debt from financial statements by disclosing it as a footnote related to the investment. In the United States, this eligibility is determined by the Financial Accounting Standards Board. Many projects in developing countries must also be covered with war risk insurance, which covers acts of hostile attack, derelict mines and torpedoes, and civil unrest which are not generally included in "standard" insurance policies. Today, some altered policies that include terrorism are called Terrorism Insurance or Political Risk Insurance. In many cases, an outside insurer will issue a performance bond to guarantee timely completion of the project by the contractor.

Publicly-funded projects may also use additional financing methods such as tax increment financing or Private Finance Initiative (PFI). Such projects are often governed by a Capital Improvement Plan which adds certain auditing capabilities and restrictions to the process.

History

Limited recourse lending was used to finance maritime voyages in ancient Greece and Rome. Its use in infrastructure projects dates to the development of the Panama Canal, and was widespread in the US oil and gas industry during the early 20th century. However, project finance for high-risk infrastructure schemes originated with the development of the North Sea oil fields in the 1970s and 1980s. For such investments, newly created Special Purpose Corporations (SPCs) were created for each project, with multiple owners and complex schemes distributing insurance, loans, management, and project operations. Such projects were previously accomplished through utility or government bond issuances, or other traditional corporate finance structures.

Project financing in the developing world peaked around the time of the Asian financial crisis, but the subsequent downturn in industrializing countries was offset by growth in the OECD countries, causing worldwide project financing to peak around 2000. The need for project financing remains high throughout the world as more countries require increasing supplies of public utilities and infrastructure. In recent years, project finance schemes have become increasingly common in the Middle East, some incorporating Islamic finance.

The new project finance structures emerged primarily in response to the opportunity presented by long term power purchase contracts available from utilities and government entities. These long term revenue streams were required by rules implementing PURPA, the Public Utilities Regulatory Policies Act of 1978. Originally envisioned as an energy initiative designed to encourage domestic renewable resources and conservation, the Act and the industry it created lead to further deregulation of electric generation and, significantly, international privatization following amendments to the Public Utilities Holding Company Act in 1994. The structure has evolved and forms the basis for energy and other projects throughout the world. so we should be aware while using these resorces

Mengapa produksi massal Mobnas menjadi lebih murah

Teknologi produksi massal bisa membuat mobnas menjadi lebih murah. Untuk memahami hal itu, sebuah tulisan dibawah ini membantu kita untuk memahaminya.

Saya akan memberikan ilustrasi nyata agar pertanyaan pada judul diatas bisa terjawab dengan baik. Produk massal merupakan produk yang dihasilkan dari proses produksi yang berkesinambungan atau continue mulai dari bahan baku sampai pada proses packing. Dengan proses produksi yang continue ini, biaya produksi bisa ditekan karena kita tidak perlu mengganti setting mesin. Kalaupun ada perubahan setting mesin, biasanya bersifat berkala dan masuk dalam proses perawatan. Setting mesin produksi yang tidak sering mengalami perubahan, tentunya hasil kerja mesin tersebut akan sangat efisien.

Pada proses produksi produk massal berlaku sistem kali, waktu beberapa detik pun sangat berharga dan berefek sangat signifikan terhadap biaya proses produksi produk massal. Seandainya setiap proses tertentu terbuang waktu selama 1 detik, bila dikalikan dengan beberapa ribu produk yang dihasilkan maka hasilnya pun menjadi 1000 detik.

Faktor berikutnya yang membuat harga produk massal lebih murah dibandingkan dengan produk custom adalah dari sisi pembelian bahan baku, bahan penunjang, pelengkap dan lain-lain. Kita semua pasti mengetahui satu hal, pembelian dengan jumlah sedikit dengan pembelian jumlah besar atau partai akan menghasilkan perbedaan harga. Sebagai ilustrasi, bila kita ke pasar dan hendak membeli suatu barang tertentu dengan jumlah yang banyak, secara psikologis kita pasti menginginkan harga yang lebih rendah bila dibandingkan dengan pembelian satu buah saja. Ilustrasi ini juga berlaku di sektor bisnis manufaktur.

Ilustrasi lagi, semisal kita membeli bahan bila satu buah saja berharga Rp. 2.000,- jika kita membeli 100 buah harganya @ Rp. 1.750,-. Mungkin bagi sebagian orang dengan perbedaan hanya Rp. 250,- tidak terasa, namun hal ini tidak berlaku di bidang manufaktur atau produksi produk massal. Kembali lagi faktor kali menentukannya, bisa dibayangkan bila perbedaan harga yang hanya Rp. 250,- x 1000 buah = 250.000 dan angka ini bukan sesuatu yang kecil lagi.

Dari sinilah terlihat bagaimana sebuah barang masal bisa dihasilkan dengan harga yang lebih murah bila dibandingkan dengan barang hasil custom. Barang hasil custom justru berlaku kebalikannya, semua setting mesin tergantung dengan jenis produk yang akan diproduksi dan dipesan oleh pelanggan.

Namun perlu kita sadari, untuk menghasilkan suatu barang masal sangatlah tidak mudah. Karena bisnis seperti ini sangatlah padat modal, dalam artian benar-benar mengandalkan kekuatan keuangan. Hal inilah yang menyebabkan tidak semua orang mampu menghasilkan suatu produk masal dengan harga yang murah. Saya harapkan dengan adanya artikel ini bisa membuka wawasan kita semua bagaimana suatu produk bisa dihasilkan dengan harga yang ekonomis dan terjangkau.

How To Mass Produce "Mobnas" or Indonesia's National Car

Indonesia is able to produce its nastional car. Even high school students had the capability to build prestigious car like "ESEMKA (SMK)" car.

But all things stopped when the car will be mass produced. Why?? Indonesia face difficulties how to mass produce their own brand car.

To understand how to mass produce "Mobnas" or Indonesia's national car, we can start by understanding the facts below.

Mass production (also called flow production, repetitive flow production, series production, or serial production) is the production of large amounts of standardized products, including and especially on assembly lines. The concepts of mass production are applied to various kinds of products, from fluids and particulates handled in bulk (such as food, fuel, chemicals, and mined minerals) to discrete solid parts (such as fasteners) to assemblies of such parts (such as household appliances and automobiles).

The term mass production was defined in a 1926 article in the Encyclopedia Britannica supplement that was written based on correspondence with Ford Motor Co. The New York Times used the term in the title of an article that appeared before publication of the Britannica article. It was also referenced by Sir Chiozza Money, the Fabian banker, politician and author, writing in the London Observer in 1919, comparing the efficiency of Mass Production techniques as used in America, with British practice.

Overview

Mass production of assemblies typically uses electric-motor-powered moving tracks or conveyor belts to move partially complete products to workers, who perform simple repetitive tasks. It improves on earlier high-output, continuous-flow mass production made possible by the steam engine.

Mass production of fluid and particulate matter typically involves pipes with centrifugal pumps or screw conveyors (augers) to transfer raw materials or partially complete product between vessels. Fluid flow processes such as oil refining and bulk materials such as wood chips and pulp are automated using a system of process control which uses various instruments to measure variables such as temperature, pressure, volumetric throughput and level, providing feedback to a controller that holds a setpoint.

Bulk materials such as coal, ores, grains and wood chips are handled by belt, chain, pneumatic or screw conveyors, bucket elevators and mobile equipment such as front end loaders. Materials on pallets are handled with fork lifts. Also used for handling heavy items like reels of paper, steel or machinery are electric overhead cranes, sometimes called bridge cranes because they span large factory bays.

Mass production is capital intensive and energy intensive, as it uses a high proportion of machinery and energy in relation to workers. It is also usually automated to the highest extent possible. With fewer labour costs and a faster rate of production, capital and energy are increased while total expenditure per unit of product is decreased. However, the machinery that is needed to set up a mass production line (such as robots and machine presses) is so expensive that there must be some assurance that the product is to be successful to attain profits.

One of the descriptions of mass production is that "the skill is built into the tool", which means that the worker using the tool need not have the skill. For example, in the 19th or early 20th century, this could be expressed as "the craftsmanship is in the workbench itself" (not the training of the worker). Rather than having a skilled worker measure every dimension of each part of the product against the plans or the other parts as it is being formed, there were jigs ready at hand to ensure that the part was made to fit this set-up. It had already been checked that the finished part would be to specifications to fit all the other finished parts—and it would be made more quickly, with no time spent on finishing the parts to fit one another. Later, once computerized control came about (for example, CNC), jigs were obviated, but it remained true that the skill (or knowledge) was built into the tool (or process, or documentation) rather than residing in the worker's head. This is the specialized capital required for mass production; each workbench and set of tools (or each CNC cell, or each fractionating column) is different (fine-tuned to its task).

History

Prerequisites of mass production were interchangeable parts, machine tools and power, especially in the form of electricity.

Some of the organizational management concepts needed to create 20th-century mass production, such as scientific management, had been pioneered by other engineers (most of whom are not famous, but Frederick Winslow Taylor is one of the well-known ones), whose work would later be synthesized into fields such as industrial engineering, manufacturing engineering, operations research, and management consultancy. Henry Ford downplayed the role of Taylorism in the development of mass production at his company. However, Ford management performed time studies and experiments to mechanize their factory processes, focusing on minimizing worker movements. The difference is that while Taylor focused on efficiency of the worker, Ford used machines, thoughtfully arranged, wherever possible to substitute for labor.

The United States Department of War sponsored the development of interchangeable parts for guns produced at the arsenals at Springfield, Massachusetts and Harpers Ferry, Virginia (now West Virginia) in the early decades of the 19th century, finally achieving reliable interchangeability by about 1850. This period coincided with the development of machine tools, with the armories designing and building many of their own. Some of the methods employed were a system of gauges for checking dimensions of the various parts and jigs and fixtures for guiding the machine tools and properly holding and aligning the work pieces. This system came to be known as armory practice or the American system of manufacturing, which spread throughout New England aided by skilled mechanics from the armories who were instrumental in transferring the technology to the sewing machines manufacturers and other industries such as machine tools, harvesting machines and bicycles. Singer Manufacturing Co., at one time the largest sewing machine manufacturer, did not achieve interchangeable parts until the late 1880s, around the same time Cyrus McCormick adopted modern manufacturing practices in making harvesting machines.

Mass production benefited from the development of materials such as inexpensive steel, high strength steel and plastics. Machining of metals was greatly enhanced with high speed steel and later very hard materials such as silicon carbide and tungsten carbide for cutting edges. Fabrication using steel components was aided by the development of electric welding and stamped steel parts, both which appeared in industry in about 1890. Plastics such as polyethylene, polystyrene and polyvinyl chloride (PVC) can be easily formed into shapes by extrusion, blow molding or injection molding, resulting in very low cost manufacture of consumer products, plastic piping, containers and parts.

Factory electrification

Electrification of factories began in the 1880s after the introduction of a practical DC motor by Frank J. Sprague and accelerated later after the AC motor was developed by Nikola Tesla (Westinghouse) and others. Electric motors were several times more efficient than small steam engines because central station generation were more efficient than small steam engines and because line shafts and belts had high friction losses.

Electrification enabled modern mass production, as with Thomas Edison’s iron ore processing plant (about 1893) that could process 20,000 tons of ore per day with two shifts of five men each. At that time it was still common to handle bulk materials with shovels, wheelbarrows and small narrow gauge rail cars, and for comparison, a canal digger in previous decades typically handled 5 tons per 12 hour day.

The biggest impact of early mass production was in manufacturing everyday items, such as at the Ball Brothers Glass Manufacturing Company, which electrified its mason jar plant in Muncie, Indiana, USA around 1900. The new automated process used glass blowing machines to replace 210 craftsman glass blowers and helpers. A small electric truck was used to handle 150 dozen bottles at a time where previously a hand truck would carry 6 dozen. Electric mixers replaced men with shovels handling sand and other ingredients that were fed into the glass furnace. An electric overhead crane replaced 36 day laborers for moving heavy loads across the factory.

According to Henry Ford:

”The provision of a whole new system of electric generation emancipated industry from the leather belt and line shaft, for it eventually became possible to provide each tool with its own electric motor. This may seem only a detail of minor importance. In fact, modern industry could not be carried out with the belt and line shaft for a number of reasons. The motor enabled machinery to be arranged in the order of the work, and that alone has probably doubled the efficiency of industry, for it has cut out a tremendous amount of useless handling and hauling. The belt and line shaft were also tremendously wasteful – so wasteful indeed that no factory could be really large, for even the longest line shaft was small according to modern requirements. Also high speed tools were impossible under the old conditions – neither the pulleys nor the belts could stand modern speeds. Without high speed tools and the finer steels which they brought about, there could be nothing of what we call modern industry.”

Mass production was popularized in the 1910s and 1920s by Henry Ford's Ford Motor Company, which introduced electric motors to the then-well-known technique of chain or sequential production. Ford also bought or designed and built special purpose machine tools and fixtures such as multiple spindle drill presses that could drill every hole on one side of an engine block in one operation and a multiple head milling machine that could simultaneously machine 15 engine blocks held on a single fixture. All of these machine tools were arranged systematically in the production flow and some had special carriages for rolling heavy items into machining position. Production of the Ford Model T used 32,000 machine tools.

All processes in the factory were capable of capable of turning out high precision work within tolerances.

Ford's contribution to mass production was synthetic in nature, collating and improving upon existing methods of sequential production and applying electric power to them, resulting in extremely-high-throughput, continuous-flow mass production, making the Model T affordable and, as such, an instant success.

Although the Ford Motor Company brought mass production to new heights, it was a synthesizer and extrapolator of ideas rather than being the first creator of mass production. The following paragraphs touch on precursors from prior eras.

Before the 20th century

Ships had been mass-produced using prefabricated parts and assembly lines in Venice several hundred years earlier. The Venetian Arsenal apparently produced nearly one ship every day, in what was effectively the world's first factory which, at its height, employed 16,000 people. Mass production in the publishing industry has been commonplace since the Gutenberg Bible was published using a printing press in the mid-15th century.

In the Industrial Revolution simple mass production techniques were used at the Portsmouth Block Mills to make ships' pulley blocks for the Royal Navy in the Napoleonic Wars. These were also used to make clocks and watches, and to make small arms. Though produced on a very small scale, Crimean War gunboat engines designed and assembled by John Penn of Greenwich are recorded as the first instance of the application of mass production techniques (though not necessarily the assembly-line method) to marine engineering. In filling an Admiralty order for 90 sets to his high-pressure and high-revolution horizontal trunk engine design, Penn produced them all in 90 days. He also used Whitworth Standard threads throughout.

While the preceding American system of manufacturing relied on steam power, mass production factories were electrified and used sophisticated machinery. Adoption of these techniques coincided with the birth of the Second Industrial Revolution in the USA and its emergence as the dominant industrial superpower in the 20th century. Countries that were quick to follow (e.g. Germany and Japan) achieved high rates of growth.

Use of assembly lines in mass production

Mass production systems for items made of numerous parts are usually organized into assembly lines. The assemblies pass by on a conveyor, or if they are heavy, hung from an overhead crane or monorail.

In a factory for a complex product, rather than one assembly line, there may be many auxiliary assembly lines feeding sub-assemblies (i.e. car engines or seats) to a backbone "main" assembly line. A diagram of a typical mass-production factory looks more like the skeleton of a fish than a single line.

Vertical integration

Vertical integration is a business practice that involves gaining complete control over a product's production, from raw materials to final assembly.

In the age of mass production, this caused shipping and trade problems in that shipping systems were unable to transport huge volumes of finished automobiles (in Henry Ford's case) without causing damage, and also government policies imposed trade barriers on finished units.

Ford built the Ford River Rouge Complex with the idea of making the company's own iron and steel in the same factory as parts and car assembly took place. River Rouge also generated its own electricity.

Upstream vertical integration, such as to raw materials, is away from leading technology toward mature, low return industries. Most companies chose to focus on their core business rather than vertical integration. This included buying parts from outside suppliers, who could often produce them as cheaply or cheaper.

Standard Oil, the major oil company in the 19th century, was vertically integrated partly because there was no demand for unrefined crude oil, but kerosene and some other products were in great demand. The other reason was that Standard Oil monopolized the oil industry. The major oil companies were, and many still are, vertically integrated, from production to refining and with their own retail stations, although some sold off their retail operations. Some oil companies also have chemical divisions.

Lumber and paper companies at one time owned most of their timber lands and sold some finished products such as corrugated boxes. The tendency has been to divest of timber lands to raise cash and to avoid property taxes.

Today the trend is toward platform companies, where the value added is in market analysis, engineering and product design. The platform company contracts production to outside suppliers, often in low wage countries.

Advantages and disadvantages

The economies of mass production come from several sources. The primary cause is a reduction of nonproductive effort of all types. In craft production, the craftsman must bustle about a shop, getting parts and assembling them. He must locate and use many tools many times for varying tasks. In mass production, each worker repeats one or a few related tasks that use the same tool to perform identical or near-identical operations on a stream of products. The exact tool and parts are always at hand, having been moved down the assembly line consecutively. The worker spends little or no time retrieving and/or preparing materials and tools, and so the time taken to manufacture a product using mass production is shorter than when using traditional methods.

The probability of human error and variation is also reduced, as tasks are predominantly carried out by machinery. A reduction in labour costs, as well as an increased rate of production, enables a company to produce a larger quantity of one product at a lower cost than using traditional, non-linear methods.

However, mass production is inflexible because it is difficult to alter a design or production process after a production line is implemented. Also, all products produced on one production line will be identical or very similar, and introducing variety to satisfy individual tastes is not easy. However, some variety can be achieved by applying different finishes and decorations at the end of the production line if necessary.

The Ford Model T produced tremendous affordable output but was not very good at responding to demand for variety, customization, or design changes. As a consequence Ford eventually lost market share to General Motors, who introduced annual model changes, more accessories and a choice of colors.

With each passing decade, engineers have found ways to increase the flexibility of mass production systems, driving down the lead times on new product development and allowing greater customization and variety of products.

Socioeconomic impacts

In the 1830s, French political thinker and historian Alexis de Tocqueville identified one of the key characteristics of America that would later make it so amenable to the development of mass production: the homogeneous consumer base. De Tocqueville wrote in his Democracy in America (1835) that "The absence in the United States of those vast accumulations of wealth which favor the expenditures of large sums on articles of mere luxury... impact to the productions of American industry a character distinct from that of other countries' industries. [Production is geared toward] articles suited to the wants of the whole people".

Mass production improved productivity, which was a contributing factor to economic growth and the decline in work week hours, alongside other factors such as transportation infrastructures (canals, railroads and highways) and agricultural mechanization. These factors caused the typical work week to decline from 70 hours in the early 19th century to 60 hours late in the century, then to 50 hours in the early 20th century and finally to 40 hours in the mid 1930's.

Overproduction was a result of mass production. Using a European crafts system into the late 19th century it was difficult to meet demand for products such as sewing machines and animal powered mechanical harvesters. By the late 1920s most goods were over supplied, which contributed to high unemployment during the Great Depression.

Mass production allowed the evolution of consumerism by lowering the unit cost of many goods.

East and Central Java Govt To Buy Indonesia's ESEMKA National Car As An Official Cars For All Their Staff

National cars produced in their own country should be first used by the government as their official car.

The statement disclosed by headmaster of SMK 1 Singosari School, East Java, Bagus Gunawan when contacted Okezone.

He hope that by using national car such as ESEMKA (SMK) car as an official vehicles of the institutions of government, then the costumers faith will be boosted with the quality of these cars which is made in their own country.

He said, this situation occurred in several countries "For example in Malaysia and Germany, the first domestically made cars used by his government," he continued.

He admitted that the government in East Java and Central Java has been declared ready to become the first customer when these cars will be mass produced.













Pemda Jateng dan Jatim Akan Gunakan Mobil Esemka, Siapa menyusul??

Ini merupakan tindakan yang perlu dicontoh. Tidak hanya berbicara mengenai pengembangan mobil nasional, tapi juga memberikan kontribusi konkret terhadap usaha pengembangannya.

Seperti yang dilakukan Pemerintah Provinsi Jawa Tengah dan Jawa Timur. Rencananya kedua pemda tersebut akan menggunakan mobil buatan anak-anak SMK tersebut.

"Ya, sepertinya mereka tertarik, karena masing-masing sudah memesan sebanyak 100 unit mobil Esemka," ujar konsultan Departemen Pendidikan Nasional Ari Setiawan, ketika dikunjungi detikOto, di pameran Indonesian Manufacturing, di JI Expo, Kemayoran, Jakarta, Rabu, (2/12/2009).

Rencananya Esemka yang diminati Pemda ini adalah Esemka Digdaya. Sebelumnya Digdaya juga sudah diminati oleh kalangan di China.

Meskipun belum tahu akan digunakan untuk apa, namun Ari berharap, pemesanan tersebut dilakukan karena kedua instansi pemerintah tersebut tertarik untuk menjadikan mobil Esemka sebagai unit operasional mereka.

"Itu salah satu tindakan konkret mereka, jadi tidak hanya asal bicara saja," tambahnya.

Sehingga saat ini, Ari hanya tinggal memikirkan bagaimana caranya memenuhi permintaan total 200 unit tersebut, dengan memacu para anak-anak SMK untuk semakin kreatif dan produktif. Kapan Pemerintah Pusat menyusul?

Pelan Tapi Pasti, Mobnas Akan Terwujudkan

Usaha menciptakan mobil Indonesia dengan harga terjangkau terus berlanjut. Riset menjadi unggulan nasional.

Pagi itu, 18 September 2003, langit di Lingkungan Industri Kecil (LIK) Takaru, Kelurahan Dampyak, Kecamatan Kramat, Kabupaten Tegal, terlihat cerah. LIK, yang berdiri sejak 1982 di atas lahan lebih dari 9 hektare, mulai terlihat denyutnya. Ramai dengan suara mesin las, bubut dan gergaji yang menderu. Suara riuh ini seakan menyambut pencanangan proyek kerja sama produksi dan pemanfaatan engine multiguna antara PT Surya Pantura, Badan Pengkajian dan Penerapan Teknologi (BPPT) dan Pemerintah Kabupaten Tegal, yang ditandatangani pada hari yang sama.

Berbeda dengan proyek mobil nasional (Mobnas) -diputuskan melalui Inpres No. 2/1996- yang mengimpor langsung produknya dari Korea Selatan, dalam rencananya kali ini, Kamsi Ranosaputro, Direktur Utama PT Surya Pantura, tidak muluk-muluk. Ia ingin melibatkan industri hulu sampai hilir yang ada di Tegal dengan melibatkan ratusan pengusaha kecil yang tergabung dalam Lingkungan Industri Kecil (LIK) Takaru melalui cluster system. Menurut Dinas Perindutrian Perdagangan dan Tenaga Kerja. Kab. Tegal, 2.761 perajin logam akan terserap dalam proyek ini. Rancang bangun mesinnya 100% dikerjakan oleh putra Indonesia. Produknya berupa mobil angkutan ekonomis yang terjangkau bagi dunia usaha. Bekerja sama dengan Badan Pengkajian Penerapan Teknologi (BPPT), Kamsi menjagokan mesin aluminium mulitiguna 500cc.

Mesin ini dirancang oleh nama yang tak asing lagi di industri otomotif nasional, Suparto Soejatmo, Presiden Direktur PT Indo Tekno Mandiri (ITM). Mantan Direktur Utama PT Timor Distribusi Nasional ini memperoleh bantuan dari DR. Utama H. Padmadinata, Director For Material Technology Center, BPPT dan tim. ITM telah menghasilkan sejumlah mesin yang beberapa di antaranya sudah diproduksi masal.

Mobil Indonesia

Dalam wawancara dengan BusinessWeek Indonesia bulan lalu, Suparto bersemangat mewujudkan proyek ini guna menghadirkan mobil yang bisa dibeli oleh masyarakat. “Mobil Indonesia”, demikian Suparto menyebutnya. Mesin 500cc sengaja dipilihnya,”Supaya tidak head on dengan saudara-saudara tua kita,” tuturnya. Di Indonesia saat ini belum ada mobil yang bermain di kelas 500cc. Pesaing terdekatnya adalah Daihatsu Ceria 600 cc. “Tapi itu di Malaysia. 600cc versi yang paling murah, di sini mereka tidak masuk,” ujar Suparto. Selain cc yang rendah, desain mobil juga dibuat serbaguna. “Sehingga selain bisa untuk mobil penumpang, mobil ini juga bisa dipakai untuk mengangkut produk-produk pertanian,” tuturnya.

Kemampuan Suparto untuk merancang bangun mesin tidak lagi diragukan. Ia sudah merancang 4 buah mesin, diantaranya adalah mesin 1 silinder disel horizontal—yang sudah menjadi prototype dan diproduksi untuk alat pertanian oleh PT Nefa, di Tegal—mesin disel 1600cc dan 1300cc 4 silinder Indirect Injection (IDI) dan mesin disel 5 silinder 2500cc Direct Injection, twin cam, 4 valve yang dilengkapi turbo intercooler, serta mesin motor bensin 2 silinder 500 cc, yang sekarang menjadi proyek unggulan RUSNAS (Riset Unggulan Strategis Nasional) BPPT. “Dengan blok yang sama, mesin itu bisa menjadi mesin disel dengan perubahan yang sangat minor, dan bisa double, ke gas dan bensin,” ujar Suparto.

Kerjasama Suparto dengan BPPT dimulai pada 2001. Saat itu Suparto diundang BPPT untuk menghadiri satu seminar mengenai riset material. Di sana Ia bertemu DR. Utama, Direktur Teknologi Material BPPT. Proyek mesin aluminium yang dikerjakannya mendapat dukungan dari material yang kebetulan telah dikaji BPPT. Posisinya sebagai salah satu Ketua Jaringan Usaha Mandiri Indonesia (JUMI) kemudian membawanya bertemu dengan Menristek Hatta Rajasa dan membuat proyek ini menjadi Riset Unggulan Nasional (RUSNAS).

Menurut Utama, dalam wawancara dengan BusinessWeek Indonesia, program RUSNAS yang dimulai pada 2002 merupakan bentuk dari misi BPPT menjadi agen pembangunan dan mitra terpercaya bagi industri di bidang teknologi. Proses merancang mesin dan membuat prototype engine pertama, telah selesai Desember, 2003. “Kalau dilihat dari siklus mesin, kita tidak mulai dari nol,” ujarnya, karena itu, setelah proses rancang bangun mesin dari PT ITM jadi, “BPPT punya kewajiban untuk mewujudkannya,” tambahnya lagi. Dari prototype pertama, menurut Utama, akan dilakukan modifikasi dan pengujian di Balai Teknologi Thermodinamika Motor dan Propulsi. Pengujian ini meliputi simulasi beban, tanjakan, turunan dan emisi. Setelah itu baru diuji jalan. “Kita sudah ada satu MOU dengan Kancil, yang sekarang menggunakan mesin dari Jepang,” ujarnya.


Rp2,5 miliar

Kementrian Riset dan Teknologi bertanggung jawab atas dana program RUSNAS ini. Pada 2002 BPPT dan ITM telah memperoleh bantuan sebesar Rp500 juta, ditambah Rp1 miliar pada 2003.. Tahun ini, BPPT berencana mengajukan dana sebesar Rp 1 miliar untuk pembuatan prototype tahap ke-2. Dana ini menurut Utama tinggal menunggu persetujuan dari Direktorat Jenderal Anggaran, Departemen Keuangan.

Masalah pendanaan ini pula yang jadi keluhan Suparto. ITM mengajukan dana Rp1,5 milyar untuk rancang bangun prototype kedua,. “Kalau anggarannya ditekan, produksinya akan jelek,” ujar Suparto. Biaya terbesar ada di pengadaan peranti lunak asli yang seharga $70 ribu. Menurut DR. I Nyoman Jujur, Material Engineer, BPPT, apabila dana tersedia, diharapkan target uji tahun ini bisa terlaksana. “Selanjutnya kita akan membuat kira-kira 10 prototipe lagi,” tutur Nyoman. Pada Oktober tahun ini, BPPT akan mencoba mengganti penggunaan bahan bakar bensin dengan bahan bakar gas. “Kita juga mencoba mengganti karburator menjadi injection untuk mengantisipasi aturan pemerintah pada 2005,” tuturnya.

BPPT menargetkan konten lokal di atas 90%. Dengan kondisi ini, menurut Utama, proyek ini bisa bermanfaat bagi industri komponen di Tanah Air dan menciptakan lapangan kerja. “Itulah tujuan utama BPPT, sehingga IPTEK benar-benar bisa teraplikasi ke masyarakat,” ujarnya. Untuk mewujudkannya butuh waktu yang panjang. “Secara bertahap bisa 10 tahun,” ujar Suparto. Ketika mesin sudah jadi semua lalu tergantung pada investor seperti Kamsi. “BPPT bukan investor, mereka membantu kita. Kalau tidak ada BPPT pun kita jalan, tapi pelan-pelan,” ujar Suparto. Dengan adanya BPPT dan RUSNAS proyek ini diharapkan lebih cepat terlaksana.

Kuncinya ada di niat politik pemerintah. Menurut Suparto, harus ada komitmen bersama dari pihak-pihak terkait, termasuk lembaga internasional supaya tidak ada pihak yang merasa dirugikan. “Kita tidak akan minta proteksi. Tapi pemerintah bisa bilang ke WTO untuk mobil 500cc, pajaknya sekian,” ujarnya. Suparto juga tidak takut bersaing. “Saya siap diadu, kalau mesin saya jelek, masak ada orang Iran datang ke saya, juga orang Turki dan China?” tambahnya lagi. Rancang bangun mesin PT ITM, menurut Suparto, selalu memakai standar internasional. “Tapi ada yang saya rubah sehingga cocok dengan iklim yang ada disini,” ujarnya. Mesin 1240 cc, yang dulu dipesan untuk Timor—dan rencananya menjadi proptotype mobil nasional—kini telah jadi dalam bentuk satu unit mobil utuh dan sudah digunakan.

Dari sisi investor, Kamsi menyatakan siap. Walau tidak menyebut angka, PT Surya Pantura menurut Kamsi sudah mengalokasikan dana untuk memproduksi 5000 unit mesin per tahun. Kegiatan pabrikasi untuk proyek otomotif ini, menurut Kamsi, sudah dipersiapkan sejak November tahun lalu dan rencananya dimulai pada Juni tahun ini. Dari sketsa yang diperoleh BusinessWeek Indonesia, mobil ini akan dibuat dengan berbagai varian seperti sedan, pick up, dari mulai yang sederhana hingga yang mewah. Model awal rencananya akan dijual dengan harga di bawah Rp30 juta. Dengan disertai sertifikasi dari BPPT, Deperindag dan Departemen Perhubungan, mobil ini siap mengisi ceruk pasar mobil murah di Indonesia—demi mewujudkan sebuah mimpi, “Mobil Indonesia”.

“ Harus Jadi Prioritas ”
Soehari Sargo, Pengamat Otomotif, tanggal 27 Januari di Jakarta

Ada rencana membuat mobil nasional 500 cc. Apakah bisa bersaing?

Sebetulnya, kebutuhan Indonesia begitu besar, dari Jaguar di kota besar sampai yang paling sederhana di pelosok-pelosok. Jadi peluang pasarnya ada, karena kalau kita lihat di daerah-daerah, daya belinya sangat rendah dan juga kondisi infrastruktur masih sangat sederhana. Yang penting, pola transportasi atau pola penggunaan kendaraan berbeda dengan yang ada di kota-kota. Kalau di desa, mereka menggunakan kendaraan tidak hanya untuk pribadi tapi juga untuk mengangkut barang. Masuk ke sawah-sawah. Sehingga, akan sangat bermanfaat kalau ada kendaraan yang membantu dalam kelas harga maupun dalam fungsinya. Sebagai contoh di Jepang. Waktu Jepang baru selesai perang, ada kendaraan-kendaraan kecil, bahkan bemo, seperti Mazda kotak dsb. Demikian juga di India dan Thailand. Jadi kalau dilihat dari situ, seharusnya peluang pasarnya ada.

Apakah tidak akan bersaing dengan mobil sejenis yang cc-nya sama, yang akan datang dari Cina?

Itu juga menarik untuk dilihat. Namun untuk sementara ini, nampaknya belum ada. Pemain-pemain ini lebih banyak memperhatikan segmen sedan yang di atas 1500cc, itu satu. Yang kedua, China misalnya, sekarang lebih banyak memperhatikan pasar dalam negerinya yang sudah mencapai 4 juta dalam setahun. Walaupun daya beli masyarakat China masih agak rendah, permintaan begitu besar. Pemain-pemain otomotif dunia juga tidak meminati yang (cc-nya) kecil-kecil ini.

Apakah program ini membutuhkan proteksi dan dukungan penuh dari pemerintah?

Saya melihatnya bukan proteksi seperti yang berlaku dulu, tapi lebih pada pengembangan pasar. Misalnya, KUD dan usaha kecil mendapat fasilitas yang lebih baik untuk memiliki kendaraan. Kalau fasilitas dari sisi perpajakan saya kira itu sudah karena semua diproduksi di dalam negeri. Ada sebagian kecil yang diimpor tapi bea masuknya rendah. Sebentar lagi pasti nol dan karena itu tidak akan terkena pajak barang mewah hanya PPN saja. Jadi dalam konsep seperti itulah yang dimaksudkan sebagai proteksi. Kalau saya mengatakannya prioritas.

Bagaimana political will dari pemerintah karena ini sekarang ‘kan menjadi RUSNAS?

Yang masih ditunggu adalah kesinambungan dari program RUSNAS sampai ke kebijakan industri dan perdagangannya. Nah, ini yang belum. Itu urusannya kabinet.

Kalau melihat daya beli masyakarat, mobil dengan harga berapa yang mampu terserap oleh pasar?

Sekarang kalau dilihat pasarnya, kira-kira 70% penjualan ada di Jabotabek dengan harga rata-rata antara Rp150-200 juta. Artinya, masyarakat tipikal di Jabotabek sudah mampu membeli mobil dengan harga tersebut. Dan kalau kita lihat dari GDP regional, ada daerah yang kaya dan daerah yang terbelakang. Kalau harganya antara Rp100-150 juta, pasarnya terbatas di daerah yang sudah maju atau di kota-kota besar. Sementara di daerah-daerah, saya yakin mereka kurang tertarik. Kalau harganya bisa di bawah Rp50 juta saya rasa akan sangat kompetitif.

Ada kemungkinan bersaing dengan produsen lain seperti dengan Daihatsu Ceria yang 800cc?

Itu teknologinya beda. Kalau yang murah (teknologinya) masih sangat sederhana, tidak pakai karburator, tidak pakai AC, dan bodinya juga disederhanakan. Sejauh itu manfaat proyek ini harus didukung karena dulu ada Maleo. Yang menentukan nanti adalah pasar. Sekarang, bagaimana menumbuhkan pasar dengan memberi prioritas dan pengarahan-pengarahan.

Spesifikasi Mesin “Mobil Indonesia”

Tipe mesin: Bensin 4 langkah, 2 silinder SOHC, 2 valves

Total kapasitas silinder: 485 cc

Bore X Stroke: 65,5 mm X 72 mm

Rasio kompresi: 9:1

Tenaga maksimal: 23 kW (31 HP)/4000 rpm

Torsi maksimal: 55 Nm/3000 rpm

Putaran mesin (Rpm) maksimal: 6000 rpm

Langsam (idle speed): 700 rpm

Klep masuk (intake valve): 31,8 mm

Klep pembuangan (exhaust valve): 27 mm

Bahan baku blok silinder: AI (AC4B)

Bahan baku kepala silinder: Al (AC4B)

Sistem pendingin: Air

Sistem pengapian: CDI Distributor Less

Sistem bahan bakar: Karburator (pompa bahan bakar elektris)

Kapasitas oli: 3 liter

Esemka Ingin Seperti Kijang

Banyak orang menganggap, mobil buatan anak bangsa kurang mumpuni, baik secara kualitas maupun penampilan. Tapi, coba lihat mobil buatan anak-anak SMK yang satu ini. Dari segi tampilan, dan kualitasnya tidak meragukan.

Tidak seperti produsen mobil China yang kebanyakan mentah-mentah mencaplok desain produk lain untuk membuat mobil nasional mereka. Tapi Esemka benar-benar mendesain Digdaya sendiri, dengan kreasi sendiri.

Begitu juga untuk dapur pacunya. Esemka mengerjakannya sendiri, mengambil basis dari mesin KIA yang sebelumnya sempat dikembangkan Mazda yang mengambil basis dari GM dan Chrysler, sehingga jadilah mesin tipe Esemka 1.5i.

"Semua kita kerjakan sendiri," ujar konsultan Departemen Pendidikan Nasional Ari Setiawan, ketika dikunjungi detikOto, di pameran Indonesian Manufacturing, di JI Expo, Kemayoran, Jakarta, Rabu, (2/12/2009)

Ari pun mengakui memang masih banyak kemiripan dengan produk lain, tapi itu wajar, karena setiap permulaan pasti meniru, mencontoh, tapi pada akhirnya bisa berkembang sendiri.

Sehingga, sampai saat ini, mereka sedang mengembangkan ECU (Electronic Control Unit) agar bisa dilokalisasi juga, karena untuk mobil Esemka, hanya tinggal ECU yang masih mengambil dari Siemens.

Harapannya, tambah Ari, semua pihak bisa memberikan apresiasi, karena biar bagaimanapun, produk anak-anak SMK ini akan terus berkembang, terus menyempurnakan diri, karena tidak ada yang instan.

"Seperti juga Toyota Kijang, dari mulai Kijang buaya yang tanpa jendela kaca, sampai sekarang ada Kijang Innova, nah, kita juga bakal seperti itu perkembangan kedepannya, tunggu saja," pungkas Ari.

This is Indonesia's made car of ESEMKA-1

The car will be produced by Indonesia highschool student across Java.

Mobnas (Esemka) Menanti Cikal Bakal Mobil Nasional

Suara Dr. Joko Sutrisno, Direktur Pembinaan SMK, Departemen Pendidikan Nasional (Depdiknas) terdengar berapi-api. Dalam tuturannya yang runut, Joko berharap, tahun mendatang lulusan Sekolah Menengah Kejuaran (SMK) , bisa menjadi motor penggerak industri dalam negeri. “Kita harus bisa di industri otomotif juga. Makanya, kami menyiapkan sejumlah program untuk membuat mobil nasional. SMK bisa kok!” ujarnya saat ditemui di kantornya, awal Juni lalu.

Jaringan Luas
Yang membuat Joko optimis, sejumlah SMK yang ada di Indonesia, bisa membuktikan kalau mereka mampu membuat kendaraan. “Kami juga sudah merakit mobil yang beberapa kali kami pamerkan. Mulai bentuknya MPV, SUV sampai mobil kabin ganda. Ini membuktikan kalau SMK memang bisa,” cetusnya mengulangi slogan yang jadi unggulannya: SMK Bisa!

Lanjut

Doakan SBY Pilih Esemka Jadi Mobil Resmi Kepresidenan

Gambar diatas adalah mobil kepresiden Obama yang dibuat khusus untuk presiden US tersebut. Rakyat sangat berharap, SBY juga memilih mobil Esemka menjadi kendaraan resmi di istana negara. Secara bertahap ini akan diikuti oleh semua kementrian.... Sebuah revolusi industi otomotif Indonesia


China Kepincut Esemka Digdaya



Mobil nasional buatan siswa SMK yakni Esemka ternyata mendapat respons yang baik dari dalam dan luar negeri, Selasa (26/5). Bahkan salah satu varian Esemka model double cabin yakni Digdaya sudah diminati oleh China.

China Minati Esemka Digdaya


Mobil nasional buatan siswa SMK yakni Esemka ternyata mendapat respons yang sangat baik. Tidak hanya dari dalam negeri tapi juga dari luar negeri.

Bahkan salah satu varian Esemka yang bermodel double cabin yakni Digdaya ternyata sudah diminati oleh China.

Hal tersebut diungkapkan oleh Direktur Pembinaan SMK Depdiknas Joko Sutrisno ketika berbincang dengan detikOto akhir pekan lalu.

"Rekan kerja kita dari China sudah menyatakan berminat dengan Esemka Digdaya," papar Joko.

Ketertarikan itu menurut Joko dirasa wajar, karena selain memiliki model yang cukup menawan, harga yang ditawarkan untuk Esemka digjaya pun cukup menggiurkan.

Sebab, bila varian sejenis yang di jual oleh pabrikan besar rata-rata mematok harga yang cukup mahal yakni lebih dari Rp 250 juta untuk varian double cabin mereka, tidak begitu dengan Esemka Digdaya.

Karena Joko memproyeksi harga Esemka Digdaya ini hanyalah berkisar di angka Rp 100-110 juta. "Lebih murah dibandingkan varian sejenis dari merek luar kan," ujarnya membandingkan.

SBY Senyum-senyum Lihat Esemka

Presiden Susilo Bambang Yudhoyono (SBY) akhirnya menyempatkan diri untuk melihat mobil nasional Esemka. SBY tampak sumringah melihat mobil Esemka.

Mobil-mobil Esemka dipamerkan dalam acara peringatan Hardiknas 2009 di Sasana Budaya Ganesha, Bandung, Selasa (26/5/2009).

Dalam pantauan detikOto, SBY menunjukkan rasa bangganya, SBY pun sempat senyum-senyum melihat mobil Esemka.

Video Karya Anak Bangsa

Esemka Bukti RI Bisa Bangun Mobnas Sendiri

Mobil nasional hasil karya siswa SMK yakni Esemka seharusnya dapat menjadi bukti bahwa Indonesia sesungguhnya mampu membuat sebuah mobil nasional sendiri.

Hal tersebut di ungkapkan oleh Direktur Pembinaan SMK Depdiknas joko Sutrisno ketika berbincang dengan detikOtO, Jumat (22/5/2009).

Digdaya 1.51 akan seharga 80 jt

Mobil berbentuk pikap ekstra kabin berwarna hitam itu diberi nama Digdaya 1.51. Mobil tersebut dibuat selama 78 hari. Biaya produksinya menghabiskan dana sekitar Rp 173 juta. "Jika diproduksi masal, mungkin biaya produksinya bisa ditekan hingga Rp 80 juta per mobil," kata Bagus Gunawan, kepala SMK Singosari di pendapa Kabupaten Malang, kemarin.

Esemka Digdaya Car: The Senior High School Car

The new creation of Mobnas (Mobil Nasional) slowly but sure emerging. The variants of the Mobnas car are vary, such as Komodo for plantation area, Arina and GEA as micro Car and right now there is a pickup car created by senior high school special program (SMK) called Esemka Digdaya.

Esemka Digdaya is pickup double cabin car developed by SMK 1 Singosari Malang by using engine ex Timor 1,500cc. The times used to make this car was about 3 months only all worked by the student.